Preliminary-summation-based principal component analysis for non-Gaussian processes

نویسندگان

  • Zhijiang Lou
  • Dong Shen
  • Youqing Wang
چکیده

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Multivariate statistical monitoring of two-dimensional dynamic batch processes utilizing non-Gaussian information

Dynamics are inherent characteristics of batch processes, and they may exist not only within a particular batch, but also from batch to batch. To model and monitor such two-dimensional (2D) batch dynamics, two-dimensional dynamic principal component analysis (2D-DPCA) has been developed. However, the original 2D-DPCA calculates the monitoring control limits based on the multivariate Gaussian di...

متن کامل

Gaussian Processes for Principal Component Analysis

We show how the supervised method of Gaussian Processes may be used for Principal Component Analysis using two intuitions about the nature of the first principal component filters.

متن کامل

Karhunen–Loève expansion for multi-correlated stochastic processes

We propose two different approaches generalizing the Karhunen–Loève series expansion to model and simulate multi-correlated non-stationary stochastic processes. The first approach (muKL) is based on the spectral analysis of a suitable assembled stochastic process and yields series expansions in terms of an identical set of uncorrelated random variables. The second approach (mcKL) relies on expa...

متن کامل

Modelling sparse generalized longitudinal observations with latent Gaussian processes

In longitudinal data analysis one frequently encounters non-Gaussian data that are repeatedly collected for a sample of individuals over time. The repeated observations could be binomial, Poisson or of another discrete type or could be continuous.The timings of the repeated measurements are often sparse and irregular. We introduce a latent Gaussian process model for such data, establishing a co...

متن کامل

Latent and small fault detection and diagnosis for dynamic processes

Compared to large process faults, the latent and small ones are difficult to be detected. However, the accumulation of these faults may even more harmful to the process. A novel fault detection and diagnosis method is proposed which is based on similarity factor and a variable moving window. The new method is based on the idea that a change of process can be reflected in the distribution of the...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2015